Dye degradation, antimicrobial and larvicidal activity of silver nanoparticles biosynthesized from Cleistanthus collinus

Saudi J Biol Sci. 2020 Jul;27(7):1753-1759. doi: 10.1016/j.sjbs.2020.05.008. Epub 2020 May 11.

Abstract

The present study aimed in green synthesis and characterization of silver nanoparticles (AgNPs) using the leaves of Cleistanthus collinus. The NPs showed various absorption peaks between 3402 cm-1 and 1063 cm-1. FTIR spectrum revealed the presence of OH group, alkene, aromatic hydrocarbon, aliphatic fluro compound and aliphatic chloro compounds. Scanning electron microscopic analysis revealed the particle size ranged from 30 to 50 nm. The biosynthesized NPs have potent activity against Shigella dysentriae, Staphylococcus aureus and Bacillus subtilis and the zone of inhibition was 21 ± 1, 20 ± 2, 16 ± 2 mm, respectively. Toxicity of the synthesized NPs was tested on green gram (Vigna radiata) seed at various concentrations (20-100%) and germination was induced by NPs treated seeds. Shoot length and root length was higher in NPs treated plant than control plant (p < 0.01). Elevated level of catalase (CAT) and superoxide dismutase (SOD) and about 13% CAT and 7% SOD activity registered than control. Superoxide dismutase activity of root and shoot varied based on the dosage of AgNPs (p < 0.01). Also, the NPs (1%) showed significant larvicidal activity on Aedes aegypti and 100% mortality was achieved after 24 h treatment. The green synthesized NPs reduced methylene blue and 4-nitrophenol significantly (p < 0.01). The colouration of methylene blue and 4-nitrophenol were considerably reduced after 60 min showed the potential of dye degrading ability.

Keywords: Antibacterial; Cleistanthus collinus; Dye degradation; Larvicidal; Nanoparticles; Waste management.