Gene therapy for hair cell regeneration: Review and new data

Hear Res. 2020 Sep 1:394:107981. doi: 10.1016/j.heares.2020.107981. Epub 2020 May 5.

Abstract

Hair cells (HCs) in the cochlea are responsible for transducing mechanical sound energy into neural impulses which lead to the perception of sound. Loss of these sensory cells is the most common cause of sensorineural hearing loss, and spontaneous HC regeneration does not occur in mature mammals. Among the future potential treatment modalities is gene therapy, which is defined as the administration of either DNAs or RNAs as active pharmaceutical ingredients for inducing a clinically-beneficial response. Gene therapy is being envisioned and evaluated as a potential tool for addressing a number of human inner ear disorders. This paper is a hybrid Review and Research Paper, including unpublished data and a review of HC regeneration studies in live animal models. Current gene therapeutic approaches for replacing lost HC populations have been aimed at converting supporting cells surviving within the neuro-epithelium to new HCs by inducing upregulation of bHLH transcription factors such as Atoh1 or reciprocal silencing of Notch signaling with siRNAs, to tip the balance of transcriptional regulation toward a HC fate. Development of one or more of these techniques may yield a path to effective restoration of inner ear form and function. This review also describes other approaches and molecular targets that may prove efficacious and provides perspectives on future clinical challenges and opportunities for gene therapy to become a valuable weapon for the long-anticipated realization of this regenerative treatment.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Basic Helix-Loop-Helix Transcription Factors / genetics
  • Ear, Inner*
  • Genetic Therapy*
  • Hair Cells, Auditory*
  • Humans
  • Regeneration

Substances

  • Basic Helix-Loop-Helix Transcription Factors