Use of spectroscopic indicators for the monitoring of bromate generation in ozonated wastewater containing variable concentrations of bromide

Water Res. 2020 Sep 1:182:116009. doi: 10.1016/j.watres.2020.116009. Epub 2020 Jun 6.

Abstract

Time-resolved monitoring of bromate and other by-products formed into effluents treated with ozone or advanced oxidation processes in wastewater treatment plants (WWTPs) is time-consuming and expensive. This study examined whether concentrations of bromate formed in wastewater after ozonation in the presence of widely varying bromide levels (from ca. 0.7-21.2 mg/L) can be quantified based on measurements of changes in optical properties (differential UV absorbance (ΔUVA), spectral slopes, total or regional fluorescence) of the ozonated samples. Batch ozonation was carried out using a secondary effluent produced at a major wastewater treatment plant located in the Metropolitan Seattle Area. The tests involved raw and bromide-spiked samples treated with ozone doses from 0.1 to 1 mg O3/mg DOC. Measurements of the absorbance at 254 nm (UVA254), fluorescence and bromate concentrations were performed on the treated samples. In the ozonated wastewater the concentration of bromate increased approximately linearly, from <10 ppb to ca. 200 ppb, without showing the lag phase characteristic for lower ozone doses (<0.4 mg O3/mg DOC) that was observed in previous studies carried out with concentrations of bromide in the range of 0.05-0.5 mg/L. The highest bromide concentrations used in this study (>10 mg/L) tended to inhibit the generation of bromate. Relative reduction of UVA254 and total fluorescence (TF) were found to be good predictors of bromate generation. Specifically, exponential curves could adequately fit the non-linear relationships found to exist between the concentrations of bromate and the relative reductions of the UV254 and TF, for any initial bromide concentrations used in this study. Little formation of bromate was found to occur for reduction ranges for UVA254 and TF of 30-40% and 70-80% respectively. Conversely, rapid increases in bromate generation were observed when the decrease of UVA254 or TF exceeded these threshold values.

Keywords: Bromate; Bromide; Excitation emission matrix; Fluorescence; Ozonation; Spectral slope; UV absorbance; Wastewater.

MeSH terms

  • Bromates
  • Bromides
  • Ozone*
  • Wastewater
  • Water Pollutants, Chemical / analysis*
  • Water Purification*

Substances

  • Bromates
  • Bromides
  • Waste Water
  • Water Pollutants, Chemical
  • Ozone