A missense mutation in the MLKL brace region promotes lethal neonatal inflammation and hematopoietic dysfunction

Nat Commun. 2020 Jun 19;11(1):3150. doi: 10.1038/s41467-020-16819-z.

Abstract

MLKL is the essential effector of necroptosis, a form of programmed lytic cell death. We have isolated a mouse strain with a single missense mutation, MlklD139V, that alters the two-helix 'brace' that connects the killer four-helix bundle and regulatory pseudokinase domains. This confers constitutive, RIPK3 independent killing activity to MLKL. Homozygous mutant mice develop lethal postnatal inflammation of the salivary glands and mediastinum. The normal embryonic development of MlklD139V homozygotes until birth, and the absence of any overt phenotype in heterozygotes provides important in vivo precedent for the capacity of cells to clear activated MLKL. These observations offer an important insight into the potential disease-modulating roles of three common human MLKL polymorphisms that encode amino acid substitutions within or adjacent to the brace region. Compound heterozygosity of these variants is found at up to 12-fold the expected frequency in patients that suffer from a pediatric autoinflammatory disease, chronic recurrent multifocal osteomyelitis (CRMO).

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Newborn
  • Hematopoietic Stem Cells / metabolism*
  • Hematopoietic System / pathology*
  • Hereditary Autoinflammatory Diseases
  • Humans
  • Inflammation / genetics
  • Mice
  • Mutation, Missense
  • Necroptosis / genetics*
  • Osteomyelitis / genetics
  • Protein Kinases / genetics*
  • Protein Kinases / metabolism

Substances

  • MLKL protein, human
  • MLKL protein, mouse
  • Protein Kinases

Supplementary concepts

  • Chronic recurrent multifocal osteomyelitis