Working within the Design Space: Do Our Static Process Characterization Methods Suffice?

Pharmaceutics. 2020 Jun 17;12(6):562. doi: 10.3390/pharmaceutics12060562.

Abstract

The Process Analytical Technology initiative and Quality by Design paradigm have led to changes in the guidelines and views of how to develop drug manufacturing processes. On this occasion the concept of the design space, which describes the impact of process parameters and material attributes on the attributes of the product, was introduced in the ICH Q8 guideline. The way the design space is defined and can be presented for regulatory approval seems to be left to the applicants, among who at least a consensus on how to characterize the design space seems to have evolved. The large majority of design spaces described in publications seem to follow a "static" statistical experimentation and modeling approach. Given that temporal deviations in the process parameters (i.e., moving within the design space) are of a dynamic nature, static approaches might not suffice for the consideration of the implications of variations in the values of the process parameters. In this paper, different forms of design space representations are discussed and the current consensus is challenged, which in turn, establishes the need for a dynamic representation and characterization of the design space. Subsequently, selected approaches for a dynamic representation, characterization and validation which are proposed in the literature are discussed, also showcasing the opportunity to integrate the activities of process characterization, process monitoring and process control strategy development.

Keywords: critical process parameters; critical quality attribute; dynamic design space; dynamic modeling; flexibility; process analytical technology; quality by design; reachability.