Room-Temperature Formation Pathway for CdTeSe Alloy Magic-Size Clusters

Angew Chem Int Ed Engl. 2020 Sep 21;59(39):16943-16952. doi: 10.1002/anie.202005643. Epub 2020 Jul 27.

Abstract

Little is known about the pathway of room-temperature formation of ternary CdTeSe magic-size clusters (MSCs) obtained by mixing binary CdTe and CdSe induction period samples containing binary precursor compounds (PCs) of MSCs, monomers (Ms), and fragments (Fs). Also, unestablished are dispersion effects that occur when as-mixed samples (without incubation) are placed in toluene (Tol) and octylamine (OTA) mixtures. The resulting ternary MSCs, exhibiting a sharp optical absorption peak at 399 nm, are labelled CdTeSe MSC-399, and their PCs are referred to as CdTeSe PC-399. When the amount of OTA is relatively small, single-ensemble MSC-399 evolved without either binary CdTe or CdSe MSCs. When the OTA amount is relatively large, CdTe MSC-371 appeared initially and then disappeared, while single-ensemble MSC-399 developed more deliberately. The larger the OTA amount, the more slowly these changes proceeded. The substitution reaction of CdTe PC + CdSe M/F↔CdTeSe PC-399 + CdTe M/F is proposed to be rate-determining for the MSC-399 formation in a Tol and OTA mixture. This study provides further understanding of the transformation pathway between MSCs.

Keywords: alloys; cluster compounds; crystal growth; quantum dots; reaction mechanisms.