Coplanar Electrowetting-Induced Droplet Detachment from Radially Symmetric Electrodes

Langmuir. 2020 Jul 21;36(28):8129-8136. doi: 10.1021/acs.langmuir.0c01015. Epub 2020 Jul 7.

Abstract

This work demonstrates electrowetting-induced droplet detachment in air from coplanar electrodes using a single voltage pulse. It also presents two models to predict when this detachment will occur. Previous works approximated the minimum energy for detachment based on (i) adhesion work at the solid-liquid interface and (ii) interfacial energy changes along all three interfaces in the system. This investigation updates those models to include changes in gravitational potential energy during detachment and provides validation by testing predicted detachment thresholds against experimental observations. Droplets of varying volume were ejected from electrowetting devices with (i) radially symmetric four-part coplanar electrodes and (ii) single electrodes with a ground wire inserted directly into the droplet. All experiments were performed in air. Incorporation of gravitational potential energy improves predictions for critical electrowetting number and captures the observed increase in applied voltage required with increased droplet volume. These new models will be of particular benefit in three-dimensional digital microfluidics applications that manipulate droplets in air.