Enhanced growth and β-galactosidase production on Escherichia coli using oxygen vectors

3 Biotech. 2020 Jul;10(7):298. doi: 10.1007/s13205-020-02284-4. Epub 2020 Jun 10.

Abstract

The addition of n-dodecane (between 1-3%) to the Escherichia coli fermentation broth in a mechanically agitated and aerated bioreactor revealed improved DO (dissolved oxygen) levels induced during fermentation which lead to an increase in biomass productivity and faster glucose consumption. The maximum values for enzyme activity (increased with 43% compared with the control) and k L a (the volumetric mass transfer coefficient) were obtained for the addition of 2% v/v n-dodecane in the bioreactor, due to the fact that oxygen limitation during the exponential growth phase of the bacterium can repress β-galactosidase production. The oxygen vector addition increased the available dissolved oxygen and activated a redox-sensitive regulation and an elevated intracellular oxidative metabolism that lead to the enhancement in E. coli biomass accumulation and a more accurate protein folding of β-galactosidase that would increase its activity. In addition to the experimental analysis, a complex model, developed using an improved version of Bacterial Foraging Algorithm and Artificial Neural Networks, was proposed, with a good average absolute value (6.2% in the training phase and 7.28% in the testing phase) between the process dynamic and the predictions generated by the model.

Keywords: Aerobic fermentation; Biosynthesis; Oxygen vector; β-Galactosidase.