Development and Verification of an Economical Method of Custom Target Library Construction

ACS Omega. 2020 May 29;5(22):13087-13095. doi: 10.1021/acsomega.0c01014. eCollection 2020 Jun 9.

Abstract

Although technological advances have greatly reduced the cost of DNA sequencing, sample preparation time and reagent costs remain the limiting factors for many studies. Based on low-cost targeted amplification, we developed an economical method for custom target library construction based on DNA nanoball (DNB) technology and two-step polymerase chain reaction (PCR). Here, we refer to this method as the two-step PCR, which was compared to traditional multiplex PCR methods in three aspects, data quality, efficiency, and specificity to humans. The results confirmed that two-step PCR reduces to finishing 128 sequencing libraries in only 2 h 24 min 59 s of the total PCR time and at a data utilization rate of 0.44 at a cost of approximately $1.70 per sample for targeted sequencing via the two-step PCR. The replacement of traditional multiplex PCR methods with this strategy makes the sample preparation process before sequencing relatively more cost-effective and further reduces the cost of next-generation sequencing (NGS). This method may also be free from the interference of other species and the limitations of sample type and DNA content. These findings reveal possibilities for broad applications of this approach in forensic research.