Trametenolic Acid B Triggers HSP90AA4P and Autophagy in HepG2/2.2.15 Cells by Proteomic Analysis

ACS Omega. 2020 May 26;5(22):13042-13051. doi: 10.1021/acsomega.0c00962. eCollection 2020 Jun 9.

Abstract

Our previous studies have demonstrated that trametenolic acid B (TAB) extracted from the Laetiporus sulphureus (Fr.) Murrill owned effective anti-proliferation of HepG2/2.215 cells and induced autophagy activity. The present aim was to further investigate its mechanisms involved by proteomic analysis. The iTRAQ of TAB on HepG2/2.215 was carried out and the western blot was used to verify the results of the proteomics analysis. According to the peptide segment quantitative standard (FDR ≤ 1%), a total of 5324 proteins were identified in HepG2/2.215 by proteomic analysis. The results identified that the major up-regulated proteins were HSP90AA4P, MYB, SERPINE1, and down-regulated proteins were Rho C, SERPINA1, and PIK3R4, which were related to PI3K/Akt signaling pathway, cell metastasis, and autophagy. HSP90AA4P and Rho C's proteomics analysis were further confirmed by the western blot. The proteomic results demonstrated that the anti-hematoma effect of TAB was closely related to the increase of HSP90AA4P protein expressions and autophagy, which may be a critical target of TAB, which was expected to be a candidate drug for the treatment liver cancer.