Mesenchymal stromal/stem cells modulate response to experimental sepsis-induced lung injury via regulation of miR-27a-5p in recipient mice

Thorax. 2020 Jul;75(7):556-567. doi: 10.1136/thoraxjnl-2019-213561. Epub 2020 Jun 16.

Abstract

Introduction: Mesenchymal stromal cell (MSC) therapy mitigates lung injury and improves survival in murine models of sepsis. Precise mechanisms of therapeutic benefit remain poorly understood.

Objectives: To identify host-derived regulatory elements that may contribute to the therapeutic effects of MSCs, we profiled the microRNAome (miRNAome) and transcriptome of lungs from mice randomised to experimental polymicrobial sepsis-induced lung injury treated with either placebo or MSCs.

Methods and results: A total of 11 997 genes and 357 microRNAs (miRNAs) expressed in lungs were used to generate a statistical estimate of association between miRNAs and their putative mRNA targets; 1395 miRNA:mRNA significant association pairs were found to be differentially expressed (false discovery rate ≤0.05). MSC administration resulted in the downregulation of miR-27a-5p and upregulation of its putative target gene VAV3 (adjusted p=1.272E-161) in septic lungs. In human pulmonary microvascular endothelial cells, miR-27a-5p expression levels were increased while VAV3 was decreased following lipopolysaccharide (LPS) or tumour necrosis factor (TNF) stimulation. Transfection of miR-27a-5p mimic or inhibitor resulted in increased or decreased VAV3 message, respectively. Luciferase reporter assay demonstrated specific binding of miR-27a-5p to the 3'UTR of VAV3. miR27a-5p inhibition mitigated TNF-induced (1) delayed wound closure, increased (2) adhesion and (3) transendothelial migration but did not alter permeability. In vivo, cell infiltration was attenuated by intratracheal coinstillation of the miR-27a-5p inhibitor, but this did not protect against endotoxin-induced oedema formation.

Conclusions: Our data support involvement of miR-27a-5p and VAV3 in cellular adhesion and infiltration during acute lung injury and a potential role for miR-27a-based therapeutics for acute respiratory distress syndrome.

Keywords: ARDS; critical care; respiratory infection.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acute Lung Injury / etiology
  • Acute Lung Injury / genetics*
  • Acute Lung Injury / therapy
  • Animals
  • Apoptosis
  • Cells, Cultured
  • Disease Models, Animal
  • Gene Expression Regulation*
  • Male
  • Mesenchymal Stem Cell Transplantation / methods*
  • Mice
  • Mice, Inbred C57BL
  • MicroRNAs / biosynthesis
  • MicroRNAs / genetics*
  • RNA, Messenger / genetics*
  • RNA, Messenger / metabolism
  • Sepsis / complications*
  • Signal Transduction

Substances

  • MicroRNAs
  • Mirn27 microRNA, mouse
  • RNA, Messenger