Room-temperature chemical synthesis of 3-D dandelion-type nickel chloride (NiCl2@NiF) supercapattery nanostructured materials

J Colloid Interface Sci. 2020 Oct 15:578:547-554. doi: 10.1016/j.jcis.2020.04.021. Epub 2020 Apr 14.

Abstract

A simple, room-temperature operable, glycerol-supported single beaker-inspired, and binder-free soft-chemical protocol has been developed to synthesize 3-D dandelion flower-type nickel chloride (NiCl2) supercapattery (supercapacitor + battery) nanostructured electrode material from solid 3-D nickel-foam (NiF). The dandelion flower-type NiCl2@NiF labeled as B electrode, demonstrates a battery-type electrochemical performance as obtained 1551 F·g-1 specific capacitance (SC) and 95% cyclability over 50,000 cycles is higher than that of a setaria viridis-type NiCl2@NiF electrode, prepared without glycerol labeled as A electrode. As a commercial market product, assembled NiCl2@NiF@ (cathode)// BiMoO3 (anode) pouch-type asymmetric supercapacitor energy storage device demonstrates moderate energy density and power density (28 Wh·kg-1 and 845 W·kg-1). By utilizing three devices in series, three different colored LEDs can be operated at full brightness. The as-proposed low temperature protocol impeccably effective and efficient on account of the low-cost, easy synthesis methodology for scalability, and high crytallinity as well as solvent-free and non-toxic as pyrolated gases were used while synthesis processing.

Keywords: NiCl(2)@NiF; Self-grown superstructures; Supercapatter.