Multiplanar full-field blur correction method for infrared microscopy imaging

Appl Opt. 2020 Jun 10;59(17):5142-5150. doi: 10.1364/AO.387120.

Abstract

We propose a 3D full-field focusing method for microscopic mid-wave infrared (MWIR) imagery. The method is based on the experimental estimation of a confined volumetric vision microscope point spread function. The technique employs our well-known constant-range-based nonuniformity correction algorithm as a preprocessing step and then an iteration in the z-axis Fourier-based deconvolution. The technique's ability to compensate for localized blur is demonstrated using two different real MWIR microscopic video sequences, captured from two microscopic living organisms using a Janos-Sofradir MWIR microscopy setup. The performance of the proposed algorithm is assessed on real and simulated noisy infrared data by computing the root-mean-square error and the roughness Laplacian pattern indexes, which are specifically developed for the present work.

MeSH terms

  • Algorithms
  • Animals
  • Daphnia / cytology*
  • Image Enhancement / methods*
  • Image Processing, Computer-Assisted / methods
  • Imaging, Three-Dimensional
  • Infrared Rays
  • Microscopy / methods*