Fabrication and characterization of remineralizing dental composites containing hydroxyapatite nanoparticles

J Mech Behav Biomed Mater. 2020 Sep:109:103817. doi: 10.1016/j.jmbbm.2020.103817. Epub 2020 Apr 28.

Abstract

The aim of this study was to fabricate and characterize dental composites containing hydroxyapatite nanoparticles (HApNPs). Four dental composites were produced from the same organic matrix (70 wt% Bis-GMA and 30 wt% TEGDMA), with partial replacement of BaBSi particles (65 wt%) by HApNPs in the following concentrations (wt%): E0 (0) - control, E10 (10), E20 (20) and E30 (30). Ca2+ and PO43- release was evaluated in solutions with different pHs (4, 5.5, and 7) using atomic emission spectroscopy with microwave-induced nitrogen plasma while the enamel remineralization potential was evaluated in caries-like enamel lesions induced by S. mutans biofilm using micro-CT. The following properties were characterized: degree of conversion (DC%), microhardness (KHN), flexural strength (FS), elastic modulus (EM) and translucency (TP). The higher the HApNPs content, the higher the Ca2+ and PO43- release. The ions release was influenced by pH (4 > 5.5 > 7) (p < 0.05). All composites loaded with HApNPs were able to remineralize the enamel (E30 = E20 > E10) (p < 0.05). Contrarily, E0 was not able of recovering the enamel mineral loss. E0 and E10 presented highest DC%, while E20 and E30 showed similar and lowest DC%. KHN and FS were decreased with the addition of HApNPs, while EM was not influenced by the incorporation of HApNPs. E10 presented statistically similar TP to E0, while this property decreased for E20 and E30 (p < 0.05). Incorporation of HApNPs into dental composites promoted enamel remineralization, mainly at potentially cariogenic pH (= 4), while maintained their overall performance in terms of physicomechanical properties.

Keywords: Dental composite; Enamel remineralization; Ions release; Nanohydroxyapatite; Physicomechanical properties.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bisphenol A-Glycidyl Methacrylate
  • Composite Resins
  • Durapatite*
  • Materials Testing
  • Nanoparticles*
  • Polymethacrylic Acids

Substances

  • Composite Resins
  • Polymethacrylic Acids
  • Bisphenol A-Glycidyl Methacrylate
  • Durapatite