Synthesis, adsorption and molecular simulation study of methylamine-modified hyper-cross-linked resins for efficient removal of citric acid from aqueous solution

Sci Rep. 2020 Jun 15;10(1):9623. doi: 10.1038/s41598-020-66592-8.

Abstract

A series of methylamine-modified hyper-cross-linked resins were fabricated from chloromethylated polystrene-co-divinylbenzene by two continuous reactions (Friedel-Crafts alkylation and amination). The BET surface area and pore volume of the as-prepared resins took a positive correlation to the reaction time and temperature during alkylation reaction while lessened during amination process. When running batch adsorption experiments for adsorption of citric acid, the methylamine-modified resin named HM-65-2 showed higher adsorption capacity of 136.3 mg/g and selectivity of 6.98 (citric/glucose) than the precursor resins. The pseudo-second-order rate model fitted better than the pseudo-first-order model, implying the adsorption sites distributed on the resins surface tended to be heterogeneous. Subsequently, the interactions between citric acid and the resin were investigated by means of molecular simulation. Simulation result showed the addition of nitrogen-containing groups significantly enhanced the adsorption performance of citric acid. Lastly, the dynamic column experiments were performed to obtain the suitable operating conditions for the citric acid adsorption.

Publication types

  • Research Support, Non-U.S. Gov't