Anti-twinning in nanoscale tungsten

Sci Adv. 2020 Jun 3;6(23):eaay2792. doi: 10.1126/sciadv.aay2792. eCollection 2020 Jun.

Abstract

Nanomaterials often surprise us with unexpected phenomena. Here, we report a discovery of the anti-twinning deformation, previously thought impossible, in nanoscale body-centered cubic (BCC) tungsten crystals. By conducting in situ transmission electron microscopy nanomechanical testing, we observed the nucleation and growth of anti-twins in tungsten nanowires with diameters less than about 20 nm. During anti-twinning, a shear displacement of 1/3〈111〉 occurs on every successive {112} plane, in contrast to an opposite shear displacement of 1 / 6 1 ¯ 1 ¯ 1 ¯ by ordinary twinning. This asymmetry in the atomic-scale shear pathway leads to a much higher resistance to anti-twinning than ordinary twinning. However, anti-twinning can become active in nanosized BCC crystals under ultrahigh stresses, due to the limited number of plastic shear carriers in small crystal volumes. Our finding of the anti-twinning phenomenon has implications for harnessing unconventional deformation mechanisms to achieve high mechanical preformation by nanomaterials.