β-Cyclodextrin covalent organic framework-modified organic polymer monolith as a stationary phase for combined hydrophilic and hydrophobic aqueous capillary electrochromatographic separation of small molecules

Mikrochim Acta. 2020 Jun 12;187(7):385. doi: 10.1007/s00604-020-04360-1.

Abstract

A β-Cyclodextrin covalent organic framework (β-CD COF) was successfully prepared under ambient temperature with a mild chemistry strategy from heptakis(6-amino-6-deoxy)-β-cyclodextrin and terephthalaldehyde. It was embedded into the poly[(glycidyl methacrylate)-co-(ethylene dimethacrylate)] [poly(GMA-co-EDMA)] monolith and served as the β-CD COF material-incorporated monolith. The synthetic materials were characterized by field emission scanning electron microscopy, energy-dispersive X-ray mapping analysis, transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and N2 adsorption-desorption isotherm. The β-CD COF material-incorporated monolith achieved baseline separation in capillary electrochromatographic separation of three amides, three amino acids, three nucleosides, four aromatic acids, and three positional isomers (with resolution values of three amides, 1.75 and 1.54; three amino acids, 5.24 and 1.75; three nucleosides, 2.56 and 1.77; four aromatic acids, 6.96, 2.74, and 1.64; three positional isomers, 1.61 and 1.50). In comparison with the original monolith, the β-CD COF material-incorporated monolith shows significantly enhanced resolution for mixed molecules. The effect of pH and concentration of buffer and applied voltage were discussed in detail. The fabricated monolith showed good stability and reproducibility (relative standard deviation (RSD) < 6.9%). Molecular modeling illuminated the interactions between the small molecules and stationary phase, and provided a sufficient theoretical basis for experimental data. Graphical abstract Schematic presentation of the preparation of β-cyclodextrin covalent organic framework (β-CD COF) material-incorporated organic polymer monolith for separating the amides, amino acids, nucleosides, aromatic acids, and positional isomers. β-CD COF materials were synthesized and incorporated into the monolith as the stationary phase. Then, the incorporated monolith was applied in the capillary electrochromatography system for separating small molecules.

Keywords: COF; Capillary electrochromatography; Molecular modeling; Separation mechanism.

Publication types

  • Research Support, Non-U.S. Gov't