Effect of the Uniaxial Compression on the GaAs Nanowire Solar Cell

Micromachines (Basel). 2020 Jun 10;11(6):581. doi: 10.3390/mi11060581.

Abstract

Research regarding ways to increase solar cell efficiency is in high demand. Mechanical deformation of a nanowire (NW) solar cell can improve its efficiency. Here, the effect of uniaxial compression on GaAs nanowire solar cells was studied via conductive atomic force microscopy (C-AFM) supported by numerical simulation. C-AFM I-V curves were measured for wurtzite p-GaAs NW grown on p-Si substrate. Numerical simulations were performed considering piezoresistance and piezoelectric effects. Solar cell efficiency reduction of 50% under a -0.5% strain was observed. The analysis demonstrated the presence of an additional fixed electrical charge at the NW/substrate interface, which was induced due to mismatch between the crystal lattices, thereby affecting the efficiency. Additionally, numerical simulations regarding the p-n GaAs NW solar cell under uniaxial compression were performed, showing that solar efficiency could be controlled by mechanical deformation and configuration of the wurtzite and zinc blende p-n segments in the NW. The relative solar efficiency was shown to be increased by 6.3% under -0.75% uniaxial compression. These findings demonstrate a way to increase efficiency of GaAs NW-based solar cells via uniaxial mechanical compression.

Keywords: GaAs; gallium arsenide; nanowire; piezoelectric; piezophototronic; piezoresistance; polarization; solar cell; wurtzite; zinc blende.