Compressive Stimulation Enhances Ovarian Cancer Proliferation, Invasion, Chemoresistance, and Mechanotransduction via CDC42 in a 3D Bioreactor

Cancers (Basel). 2020 Jun 10;12(6):1521. doi: 10.3390/cancers12061521.

Abstract

This report investigates the role of compressive stress on ovarian cancer in a 3D custom built bioreactor. Cells within the ovarian tumor microenvironment experience a range of compressive stimuli that contribute to mechanotransduction. As the ovarian tumor expands, cells are exposed to chronic load from hydrostatic pressure, displacement of surrounding cells, and growth induced stress. External dynamic stimuli have been correlated with an increase in metastasis, cancer stem cell marker expression, chemoresistance, and proliferation in a variety of cancers. However, how these compressive stimuli contribute to ovarian cancer progression is not fully understood. In this report, high grade serous ovarian cancer cell lines were encapsulated within an ECM mimicking hydrogel comprising of agarose and collagen type I, and stimulated with confined cyclic or static compressive stresses for 24 and 72 h. Compression stimulation resulted in a significant increase in proliferation, invasive morphology, and chemoresistance. Additionally, CDC42 was upregulated in compression stimulated conditions, and was necessary to drive increased proliferation and chemoresistance. Inhibition of CDC42 lead to significant decrease in proliferation, survival, and increased chemosensitivity. In summary, the dynamic in vitro 3D platform developed in this report, is ideal for understanding the influence of compressive stimuli, and can be widely applicable to any epithelial cancers. This work reinforces the critical need to consider compressive stimulation in basic cancer biology and therapeutic developments.

Keywords: bioreactor; compression; compressive stress; high grade serous; hydrogels; hydrostatic pressure; mechanotransduction; ovarian cancer; ovarian tumors; three dimensional.