Making Nonconjugated Small-Molecule Organic Radicals Conduct

Nano Lett. 2020 Jul 8;20(7):5376-5382. doi: 10.1021/acs.nanolett.0c01730. Epub 2020 Jun 18.

Abstract

Charge neutral, nonconjugated organic radicals have emerged as extremely useful active materials for solid-state electronic applications. This previous achievement confirmed the potential of radical-based macromolecules in organic electronic devices; however, charge transport in radical molecules has not been studied in great detail from a fundamental perspective. Here we demonstrate the charge transport in a nonconjugated organic small radical, 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (h-TEMPO). The chemical component of this radical molecule allows us to form a single crystal via physical vapor deposition (PVD). While the charge transport of this macroscopic open-shell single crystal is rather low, thermal annealing of the well-defined single crystal enables the molecule to have a rapid charge transfer reaction due to the electronic communication of open-shell sites with each other, which results in electrical conductivities greater than 0.05 S m-1. This effort demonstrates a drastically different model than the commonly accepted conjugated polymers or molecules for the creation of next-generation conductors.

Keywords: Nonconjugated conductor; Single-crystal; small-molecule conductor; stable radical.