Effective block by pirfenidone, an antifibrotic pyridone compound (5-methyl-1-phenylpyridin-2[H-1]-one), on hyperpolarization-activated cation current: An additional but distinctive target

Eur J Pharmacol. 2020 Sep 5:882:173237. doi: 10.1016/j.ejphar.2020.173237. Epub 2020 Jun 7.

Abstract

Pirfenidone (PFD), a pyridone compound, is well recognized as an antifibrotic agent tailored for the treatment of idiopathic pulmonary fibrosis. Recently, through its anti-inflammatory and anti-oxidant effects, PFD based clinical trial has also been launched for the treatment of coronavirus disease (COVID-19). To what extent this drug can perturb membrane ion currents remains largely unknown. Herein, the exposure to PFD was observed to depress the amplitude of hyperpolarization-activated cation current (Ih) in combination with a considerable slowing in the activation time of the current in pituitary GH3 cells. In the continued presence of ivabradine or zatebradine, subsequent application of PFD decreased Ih amplitude further. The presence of PFD resulted in a leftward shift in Ih activation curve without changes in the gating charge. The addition of this compound also led to a reduction in area of voltage-dependent hysteresis evoked by long-lasting inverted triangular (downsloping and upsloping) ramp pulse. Neither the amplitude of M-type nor erg-mediated K+ current was altered by its presence. In whole-cell potential recordings, addition of PFD reduced the firing frequency, and this effect was accompanied by the depression in the amplitude of sag voltage elicited by hyperpolarizing current stimulus. Overall, this study highlights evidence that PFD is capable of perturbing specific ionic currents, revealing a potential additional impact on functional activities of different excitable cells.

Keywords: Ca(2+) current; Hyperpolarization-activated cation current; K(+) current; Membrane potential; Pirfenidone; Pituitary cell; Voltage hysteresis.

MeSH terms

  • Animals
  • Betacoronavirus / metabolism
  • COVID-19
  • COVID-19 Drug Treatment
  • Cations / metabolism
  • Cell Line, Tumor
  • Cell Membrane / drug effects*
  • Cell Membrane / metabolism
  • Coronavirus Infections / drug therapy*
  • Coronavirus Infections / virology
  • Humans
  • Ion Channels / drug effects
  • Ion Channels / metabolism
  • Ion Transport / drug effects
  • Membrane Potentials / drug effects
  • Pandemics
  • Pneumonia, Viral / drug therapy*
  • Pneumonia, Viral / virology
  • Potassium / metabolism
  • Pyridones / pharmacology*
  • Pyridones / therapeutic use
  • Rats
  • SARS-CoV-2
  • Sodium / metabolism

Substances

  • Cations
  • Ion Channels
  • Pyridones
  • Sodium
  • pirfenidone
  • Potassium