Crystal structure, Hirshfeld surface analysis, inter-action energy and DFT studies of 4-[(4-allyl-2-meth-oxy-phen-oxy)meth-yl]-1-(4-meth-oxy-phen-yl)-1 H-1,2,3-triazole

Acta Crystallogr E Crystallogr Commun. 2020 May 29;76(Pt 6):962-966. doi: 10.1107/S2056989020006994. eCollection 2020 Jun 1.

Abstract

In the title mol-ecule, C20H21N3O3, the allyl substituent is rotated out of the plane of its attached phenyl ring [torsion angle 100.66 (15)°]. In the crystal, C-HMthphn⋯OMthphn (Mthphn = meth-oxy-phen-yl) hydrogen bonds lead to the formation of (100) layers that are connected into a three-dimensional network by C-H⋯π(ring) inter-actions, together with π-π stacking inter-actions [centroid-to-centroid distance = 3.7318 (10) Å] between parallel phenyl rings. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (48.7%) and H⋯C/C⋯H (23.3%) inter-actions. Computational chemistry reveals that the C-HMthphn⋯OMthphn hydrogen bond energy is 47.1 kJ mol-1. The theoretical structure, optimized by density functional theory (DFT) at the B3LYP/ 6-311 G(d,p) level, is compared with the experimentally determined mol-ecular structure. The HOMO-LUMO behaviour was elucidated to determine the energy gap.

Keywords: C—H⋯π(ring) inter­action; crystal structure; hydrogen bonding; triazole; π-stacking.

Grants and funding

This work was funded by Tulane University grant . Hacettepe University Scientific Research Project Unit grant 013 D04 602 004.