Neuroprotective effect of paricalcitol in a rat model of transient global cerebral ischemia

Int J Emerg Med. 2020 Jun 10;13(1):30. doi: 10.1186/s12245-020-00289-7.

Abstract

Background: Paricalcitol is known to attenuate ischemic-reperfusion injury of various organs. However, it is not known whether paricalcitol prevents neuronal injury after global cerebral ischemia. The purpose of this study is to investigate the neuroprotective effect of paricalcitol in a rat model of transient global cerebral ischemia.

Methods: This is a prospective, randomized experimental study. Male Sprague-Dawley rats that survived 10 min of four-vessel occlusion were randomly assigned to two treatment groups: one group was treated with paricalcitol 1 μg/kg IP, and the other was given an equivalent volume of normal saline IP. Drugs were administered at 5 min, 1 day, 2 days, and 3 days after ischemia. Neurologic function was assessed at 2 h, 1 day, 2 days, 3 days, and 4 days after ischemia. We tested motor function 3 days after ischemia using the rotarod test. Also, we tested memory function 4 days after ischemia using the passive avoidance test. We assessed neuronal degeneration in the hippocampus of surviving rats 4 days after ischemia.

Results: Eight rats were allocated to each group. No significant differences were found between the groups in terms of survival rate, motor coordination, or memory function. The neurological function score 2-h post-ischemia was significantly higher in the paricalcitol group (p = 0.04). Neuronal degeneration was significantly less in the paricalcitol group compared with the control group (p = 0.01).

Conclusions: Paricalcitol significantly attenuated neuronal injury in the hippocampus. Although motor coordination, memory function, and survival rate were not significantly improved by paricalcitol treatment in this study, paricalcitol remains a potential neuroprotective drug after global cerebral ischemia.

Keywords: Brain ischemia; Neuroprotection; Paricalcitol; Vitamin D.