Hydrogen Migration-Triggered Diradicaloid Singlet-Fission Switch

J Am Chem Soc. 2020 Jul 8;142(27):11791-11803. doi: 10.1021/jacs.0c02778. Epub 2020 Jun 25.

Abstract

We present a theoretical design of the singlet-fission (SF) interconversion between two hydrogen tautomers to attract attention to electronic devices such as switches in the SF field. We develop a tuned π-electron conjugation strategy based on single-hydrogen migration to introduce diradical character and yield low-lying E(T1) levels. Specifically, these objectives could be accomplished by moving one hydrogen from a dihydrogen-substituted pyrazine-fused ring to another unsubstituted pyrazine-fused ring in tetraazatetracenes. The predicted SF efficiency would be expected to exceed 120%. To guide future SF design development, one rule of thumb regarding the S0-state and T1-state emerges from our research: In the S0-state, single-hydrogen migration is crucial for effectively localized electrons, which are the key factor in the formation of diradicals. Conversely, single-hydrogen migration induces a large area of π-electron conjugation in the T1-state, which is completely applied to the electron-hole interaction in the S0T1 transition, thereby providing low-lying E(T1) levels. Furthermore, a series of hydrogen tautomers of tetraazaacenes have been proposed as diradicaloid SF switches to verify the reliability of the above rule of thumb. This study will not only help researchers in the photovoltaic field to obtain the desired E(T1) in the future but also broaden the application of hydrogen migration in photovoltaic switch research and supplement the SF database.

Publication types

  • Research Support, Non-U.S. Gov't