Impact of a low thermal conductive lightweight concrete in building: Energy and fuel performance evaluation for different climate region

J Environ Manage. 2020 Aug 15:268:110732. doi: 10.1016/j.jenvman.2020.110732. Epub 2020 May 15.

Abstract

Evaluation of energy performance of a proposed lightweight concrete, a structural component, in a building application is a novel approach and significant attempt for the future of energy-efficient buildings. Buildings are one of the largest energy consumers in the world. Thermal protection in a building is the most effective way for energy saving. Many stimulatory measures for the spreading of energy savings technologies have been recently applied into the building sectors. In this study, an investigation was carried out based upon an experimental investigation to decide the thermal properties of the lightweight concrete with different ratios of vermiculite. Moreover, analytical simulation to evaluate the energy consumption in a real building application was carried out for various fuels and different climate regions of Turkey. The results show that the most significant reduction in the total heat need occurs in the 4th region, with about 5.6 kWh/m2-year for a thickness of 0.2 m. An energy-saving of 7.5% can be achieved in the 1st region. The proposed concrete can provide a significant reduction in energy consumption and can reduce the carbon emission related to the lower energy need of the buildings. The annual saving can increase to 0.61 $/m2 for LPG in the 4th region. The payback period varies between 1.4 years and 9 years, depending on the fuel. Many OECD countries having a high population pay higher prices for electricity and natural gas compared to Turkey. It means that such an energy-efficient material can save more price due to their higher fuel cost.

Keywords: Energy analyses; Fuel cost; Lightweight concrete; Thermal insulation; Thermal performance; Vermiculite.

MeSH terms

  • Climate*
  • Electricity*
  • Thermal Conductivity
  • Turkey