Impact of cost distance and habitat fragmentation on the daily path length of Rhinopithecus bieti

PeerJ. 2020 May 20:8:e9165. doi: 10.7717/peerj.9165. eCollection 2020.

Abstract

An understanding of primate movement patterns in response to natural and anthropogenically induced changes in habitat heterogeneity, food availability, and plant species distribution is essential for developing effective management and conservation programs. Therefore, from July 2013 to June 2014, we examined the effects of landscape configuration on the ranging behavior (daily path length, DPL) of the Endangered Yunnan snub-nosed monkey (Rhinopithecus bieti) in the Baimaxueshan National Nature Reserve (27°34'N, 99°17'E) in Gehuaqing, China. Given the extreme difficulties in following the study group across high altitude mountainous terrain across an elevation of 2,500-4,000 m, we were only able to collect DPL using 3-4 GPS points per day on 21 individual days. We found that R. bieti traveled the shortest DPL in winter (1,141.31 m), followed by spring (2,034.06 m) and autumn (2,131.19 m). The cost distance, a statistical tool designed to estimate the difficulty of a species moving across its distributional range, was lowest in autumn (205.47), followed by spring (225.93) and winter (432.59) (one-way ANOVA: F = 3.852, P = 0.026, df = 2). The habitat fragmentation index (HFI), which measures the density of forest patches, indicated areas visited in the winter were more fragmented (HFI = 2.16) compared to spring (HFI = 1.83) or autumn (HFI = 1.3). Although our results should be considered preliminary, they suggest that both the availability of suitable travel routes and habitat fragmentation, driven by high-intensity human disturbance, constrain the movement of R. bieti. We found that undisturbed areas of the bands' range contained a high density of lichens, which represent a nutritious and abundant and year-round food source for Yunnan snub-nosed monkeys. In order to protect this Endangered species, we recommend that researchers construct detailed maps of landscape heterogeneity, particularly habitat connectivity, forest fragmentation, and seasonal variation in the location of major food patches in order to better understand and mitigate the effects of seasonal habitat change on patterns of R. bieti habitat utilization and population viability.

Keywords: Cost-distance model; Daily path length; Habitats fragmentation; Human disturbance; Landscape heterogeneity; Primates; Ranging behavior; Rhinopithecus bieti; Seasonal variation of habitat; Spatial analyst.

Grants and funding

This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA19050202), National Key R&D Program of China (2016YFC0503200) and State Forestry Administration of China. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.