HOE-642 improves the protection of hypothermia on neuronal mitochondria after cardiac arrest in rats

Am J Transl Res. 2020 May 15;12(5):2181-2191. eCollection 2020.

Abstract

HOE-642 has been shown to provide significant protection in a variety of models of cerebral and myocardial ischemia/reperfusion injury. In this study, we examined the impact of HOE-642, a selective Na+/H+ exchanger 1 inhibitor, with or without hypothermia on neuronal and neuronal mitochondrial function during resuscitation. Cardiac arrest was induced by 8 min of asphyxia in rats. Five groups were included in this study: sham; normothermia (N); HOE-642 (HOE, 1 mg/kg); hypothermia (Hypo, 33±0.5°C); and HOE-642 plus hypothermia (HOE+Hypo). Survival and neurological deficit scores (NDS) were evaluated after 24 h of resuscitation. ΔΨm, mitochondrial swelling, ROS production, mitochondrial complex I-IV activity, and ultrastructural changes of the hippocampal mitochondria were evaluated. Survival in the HOE+Hypo group (85.7%) was higher than in the N group (42.9%) and HOE group (31.8%), P<0.05. NDS in the Hypo and HOE+Hypo groups were lower than in the N and HOE groups, P<0.05. ΔΨm in the HOE group (2.7±0.9) were higher than in the N (1.3±0.3) and Hypo (1.4±0.4) groups, P<0.05. Mitochondrial swelling in the N group was severe than in the HOE and Hypo groups, P<0.05. The production of ROS in the HOE and HOE+Hypo groups were lower than in the N group, P<0.05. Complex I-IV activity in the HOE+Hypo group was higher than in the other groups. The ultrastructure of mitochondria in the N group was severely damaged. The mitochondria maintained structural integrity in the HOE, Hypo and HOE+Hypo groups. HOE-642 plus hypothermia during resuscitation was beneficial than HOE-642 or hypothermia alone.

Keywords: CPR; HOE642; hypothermia; ischemia/reperfusion; mitochondria; neuroprotection.