Measurement of fastening force using dry-coupled ultrasonic waves

Ultrasonics. 2020 Dec:108:106178. doi: 10.1016/j.ultras.2020.106178. Epub 2020 May 22.

Abstract

The accurate measurement of assembly fastening force of the high-pressure compressor rotor is of great significance to improve the structural connection quality and comprehensive performance of aero-engine. To solve the problem that liquid couplant reduces the measurement accuracy and causes the surface of the bolt to rust and corrode, a method of measuring the fastening force with dry-coupled ultrasonic wave was proposed in this paper. The measurement model of the fastening force including the thickness of the protective film of the ultrasonic transducer and the couplant was established, and the influence of the thickness variation in the couplant on the measurement accuracy of the fastening force was analyzed. Based on the propagation model of the ultrasonic wave on the heterogeneous interface and the principle of ultrasonic dry coupling, a coupling device was designed. At last, the experiment of fastening force measurement based on dry coupling and liquid coupling ultrasonic wave was carried out and compared. The experimental results show that the average relative errors of the fastening force measurement based on dry coupling and liquid coupling ultrasonic wave are 2.13% ± 0.42% and 3.15% ± 0.80%, respectively. Therefore, the dry coupling method can be as good or better in measuring the accuracy of the fastening force. Furthermore, it also overcomes the limitations of the liquid coupling method, which should make it more suitable to the measurement of fastening force in the aerospace field.

Keywords: Acoustoelastic effect; Aero-engine rotor assembly; Dry-coupled ultrasonic waves; Fastening force.