Egg Hatching and First Instar Falling Models of Metcalfa pruinosa (Hemiptera: Flatidae)

Insects. 2020 Jun 3;11(6):345. doi: 10.3390/insects11060345.

Abstract

Since the citrus flatid planthopper, Metcalfa pruinosa (Say), was introduced in Korea and many European countries, it has caused serious damage to various agricultural crops and landscape plants. Metcalfa pruinosa hibernates as eggs beneath the bark and in cracks of tree branches, and then substantial numbers of the first instar nymphs fall from the trees and move to other host plants. Knowing the timing of egg hatching and falling of the first instar nymphs would be key for controlling M. pruinosa. In this study, the hatching of overwintered M. pruinosa eggs and falling of the first instar nymphs from trees were monitored in several areas of Korea. These data were modeled with two starting points for degree-day accumulation, 1 January and 18 March, with a lower development threshold of 10.1 °C. The egg hatching and first instar falling models both used 1 January because the starting point performed better. The 50% appearance and falling times of the first instar nymphs were predicted to be 360.50 DD and 452.23 DD from 1 January, respectively, indicating that newly hatched nymphs stayed on the trees for about a week (i.e., 91.74 DD). Using these models, changes in the population density of the first instar nymphs of M. pruinosa on the trees were simulated, and the optimal control time range targeting the nymphs on the trees was deduced. The control time for nymphs on ground plants bordering the trees was suggested by the first instar falling model, along with observations of population density on the ground plants.

Keywords: Metcalfa pruinosa; degree-days model; egg hatching; nymph falling; overwintered eggs.