Improved forward model for quantitative pulse-echo speed-of-sound imaging

Ultrasonics. 2020 Dec:108:106168. doi: 10.1016/j.ultras.2020.106168. Epub 2020 May 23.

Abstract

Computed ultrasound tomography in echo mode (CUTE) allows determining the spatial distribution of speed-of-sound (SoS) inside tissue using handheld pulse-echo ultrasound (US). This technique is based on measuring the changing phase of beamformed echoes obtained under varying transmit (Tx) and/or receive (Rx) steering angles. The SoS is reconstructed by inverting a forward model describing how the spatial distribution of SoS is related to the spatial distribution of the echo phase shift. Thanks to the straight-ray approximation, this forward model is linear and can be inverted in real-time when implemented in a state-of-the art system. Here we demonstrate that the forward model must contain two features that were not taken into account so far: (a) the phase shift must be detected between pairs of Tx and Rx angles that are centred around a set of common mid-angles, and (b) it must account for an additional phase shift induced by the offset of the reconstructed position of echoes. In a phantom study mimicking hepatic and cancer imaging, we show that both features are required to accurately predict echo phase shift among different phantom geometries, and that substantially improved quantitative SoS images are obtained compared to the model that has been used so far. The importance of the new model is corroborated by a preliminary volunteer result.

Keywords: Inverse problem; Multimodal imaging; Reflection mode; Ultrasound tomography.