Profiling of gene expression in methicillin-resistant Staphylococcus aureus in response to cyclo-(L-Val-L-Pro) and chloramphenicol isolated from Streptomyces sp., SUK 25 reveals gene downregulation in multiple biological targets

Arch Microbiol. 2020 Oct;202(8):2083-2092. doi: 10.1007/s00203-020-01896-x. Epub 2020 Jun 3.

Abstract

Chloramphenicol (CAP) and cyclo-(L-Val-L-Pro) were previously isolated from Streptomyces sp., SUK 25 which exhibited a high potency against methicillin-resistant Staphylococcus aureus (MRSA). This study aimed to profile gene expression of MRSA treated with CAP and cyclo-(L-Val-L-Pro) compounds using DNA microarray. Treatment of MRSA with CAP resulted in upregulation of genes involved in protein synthesis, suggesting the coping mechanism of MRSA due to the inhibition of protein synthesis effect from CAP. Most upregulated genes in cyclo-(L-Val-L-Pro) were putative genes with unknown functions. Interestingly, genes encoding ribosomal proteins, cell membrane synthesis, DNA metabolism, citric acid cycle and virulence were downregulated in MRSA treated with cyclo-(L-Val-L-Pro) compound, suggesting the efficacy of this compound in targeting multiple biological pathways. Contrary to CAP, with only a single target, cyclo-(L-Val-L-Pro) isolated from this study had multiple antimicrobial targets that can delay antibiotic resistance and hence is a potential antimicrobial agent of MRSA.

Keywords: Chloramphenicol; Cyclo-(L-val-L-pro); DNA microarray; MRSA; Streptomyces SUK 25.

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Anti-Bacterial Agents / therapeutic use
  • Chloramphenicol / pharmacology*
  • Down-Regulation / drug effects*
  • Gene Expression Profiling
  • Methicillin-Resistant Staphylococcus aureus / drug effects*
  • Methicillin-Resistant Staphylococcus aureus / genetics*
  • Microbial Sensitivity Tests
  • Staphylococcal Infections / drug therapy
  • Streptomyces / chemistry

Substances

  • Anti-Bacterial Agents
  • Chloramphenicol