Genetic evidence for the mating system and reproductive success of black sea bream (Acanthopagrus schlegelii)

Ecol Evol. 2020 Apr 3;10(10):4483-4494. doi: 10.1002/ece3.6215. eCollection 2020 May.

Abstract

Understanding the mating system and reproductive success of a species provides evidence for sexual selection. We examined the mating system and the reproductive success of captive adult black sea bream (Acanthopagrus schlegelii), using parentage assignment based on two microsatellites multiplex PCR systems, with 91.5% accuracy in a mixed family (29 sires, 25 dams, and 200 offspring). Based on the parentage result, we found that 93.1% of males and 100% of females participated in reproduction. A total of 79% of males and 92% of females mated with multiple partners (only 1 sire and 1 dam were monogamous), indicating that polygynandry best described the genetic mating system of black sea bream. For males, maximizing the reproductive success by multiple mating was accorded with the sexual selection theory while the material benefits hypothesis may contribute to explain the multiple mating for females. For both sexes, there was a significant correlation between mating success and reproductive success and the variance in reproductive success of males was higher than females. Variation in mating success is the greatest determinant to variation in reproductive success when the relationship is strongly positive. The opportunity for sexual selection of males was twice that of females, as well as the higher slope of the Bateman curve in males suggested that the intensity of intrasexual selection of males was higher than females. Thus, male-male competition would lead to the greater variation of mating success for males, which caused greater variation in reproductive success in males. The effective population number of breeders (N b) was 33, and the N b/N ratio was 0.61, slightly higher than the general ratio in polygynandrous fish populations which possibly because most individuals mated and had offspring with a low variance. The relatively high N b contributes to the maintenance of genetic diversity in farmed black sea bream populations.

Keywords: Acanthopagrus schlegelii; Bateman gradient; multiple matings; parentage analysis; polygynandry.