Modulation of angiogenesis by topical application of leptin and high and low molecular heparin using the Japanese quail chorioallantoic membrane model

Saudi J Biol Sci. 2020 Jun;27(6):1488-1493. doi: 10.1016/j.sjbs.2020.04.013. Epub 2020 Apr 20.

Abstract

Pathological angiogenesis characterized by uncontrollable vessel growth is an accompanying feature of many diseases. The avian embryo chorioallantoic membrane (CAM) is an excellent model for angiogenesis research. In our study we used a less common Japanese quail CAM model for the testing of angiogenic potential of leptin, high-molecular (heparin sodium) andlow-molecular (nadroparin calcium) heparins. Heparins play a significant role in vascular endothelial cell function, and they are able to modulate the activities of angiogenic growth factors. On embryonic day 7 leptin (5 μg per CAM), heparin sodium (75 IU per CAM) and nadroparin calcium (47.5 IU per CAM) in 500 μl PBS were applied on the CAM surface. After 24 h the fractal dimension (Df) of the vasculature was evaluated. Samples from each group were histologically analyzed and VEGF-A and Quek1 expression were detected by qPCR. Df was significantly increased in the leptin group. A moderate stimulatory effect of heparin sodium and an inhibitory effect of nadroparin calcium were observed. Both leptin and heparin sodium caused a noticeable increase in the CAM thickness compared to the control and nadroparin calcium groups. We observed an increased number of blood vessels and accumulation of fibroblasts. There was no significant impact on gene expression of VEGF-A and Quek1 24 h after treatment, however, trends similar to the changes in Df and CAM thickness were present. The resulting effect of nadroparin administration on Quek1 levels was exactly the opposite to that of leptin (p < 0.05).

Keywords: Angiogenesis; Fractal dimension; Heparin; Leptin; Quail embryo; qPCR.