Incipient tip vortex cavitation localization using block-sparse compressive sensing

J Acoust Soc Am. 2020 May;147(5):3454. doi: 10.1121/10.0001265.

Abstract

Noise induced by incipient-propeller tip vortex cavitation (TVC) has a few sources near the propeller tips, which radiate a broadband signal. This article describes a compressive sensing (CS)-based TVC localization technique for coherent multiple-frequency processing, which jointly processes the measured data at multiple frequencies. Block-sparse CS, which groups several single-frequency measurements into blocks, is adopted for coherent multiple-frequency processing. The coherent multiple-frequency processing improves localization performance over that of single-frequency processing. Unlike single-frequency processing using conventional CS, which combines independent single-frequency measurement treatments by averaging, coherent multiple-frequency processing produces accurate localization without requiring a sufficient number of treated frequencies, long-time-sampled data with a time-invariant signal assumption, or even a single cavitation event. The approach is demonstrated on experimental data from a transducer source experiment and a cavitation source experiment.