Particulate Production and Composite Dust during Routine Dental Procedures. A Systematic Review with Meta-Analyses

Materials (Basel). 2020 May 31;13(11):2513. doi: 10.3390/ma13112513.

Abstract

Composite dust generation is most likely a continuous and daily procedure in dental practice settings. The aim of this systematic review was to identify, compile and evaluate existing evidence on interventions and composite material properties related to the production of aerosolized dust during routine dental procedures. Seven electronic databases were searched, with no limits, supplemented by a manual search, on 27 April 2020 for published and unpublished research. Eligibility criteria comprised of studies of any design, describing composite dust production related to the implementation of any procedure in dental practice. Study selection, data extraction and risk of bias (RoB) assessment was undertaken independently either in duplicate, or confirmed by a second reviewer. Random effects meta-analyses of standardized mean differences (SMD) with associated 95% confidence intervals (CIs) were employed where applicable. A total of 375 articles were initially identified, resulting in 13 articles being included in the qualitative synthesis, of which 5 contributed to meta-analyses overall. Risk of bias recordings ranged between low and high, pertaining to unclear/raising some concerns, in most cases. All types of composites, irrespective of the filler particles, released significant amounts of nano-sized particles after being ground, with potentially disruptive respiratory effects. Evidence supported increased % distribution of particles < 100 nm for nanocomposite Filtek Supreme XTE compared to both conventional hybrid Z100MP (SMD: 1.96, 95% CI: 0.85, 3.07; p-value; 0.001) and nano- hybrid Tetric EvoCeram (SMD: 1.62, 95% CI: 0.56, 2.68; p-value: 0.003). For cytotoxicity considerations of generated aerosolized particles, both nanocomposites Filtek Supreme XTE and nanohybrid GradiO revealed negative effects on bronchial epithelial cell viability, as represented by % formazan reduction at 330-400 μg/ml for 24 hours, with no recorded differences between them (SMD: 0.19; 95% CI: -0.17, 0.55; p-value: 0.30). Effective and more rigorous management of dental procedures potentially liable to the generation of considerable amounts of aerosolized composite dust should be prioritized in contemporary dental practice. In essence, protective measures for the clinician and the practices' personnel should also be systematically promoted and additional interventions may be considered in view of the existing evidence.

Keywords: aerosolized particles; airborne dust; composite dust; composite grinding; composite polishing; composite restoration; dental practice; nanodust; nanoparticle; orthodontic debonding.

Publication types

  • Review