Omega-3 Polyunsaturated Fatty Acids Counteract Inflammatory and Oxidative Damage of Non-Transformed Porcine Enterocytes

Animals (Basel). 2020 May 31;10(6):956. doi: 10.3390/ani10060956.

Abstract

Marine and plant-based omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are widely added to animal diets to promote growth and immunity. We tested the hypothesis that eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and their 1:2 combination could counteract acute or long-term damage of lipopolysaccharides (LPS), dextran sodium sulphate (DSS) and hydrogen peroxide (H2O2) in Intestinal Porcine Epithelial Cell line-J2 (IPEC-J2). The results showed that 24 h treatment with EPA or DHA exhibited proliferative effects in IPEC-J2 cells at low to moderate concentrations (6.25-50 μM) (p < 0.05). Further, 24 h pretreatment with individual DHA (3.3 µM), EPA (6.7 µM) or as DHA:EPA (1:2; 10 µM) combination increased the mitochondrial activity or cell membrane integrity post-LPS (24 h), DSS (24 h) and H2O2 (1 h) challenge (p < 0.05). Additionally, DHA:EPA (1:2, 10 µM) combination decreased the apoptotic caspase-3/7 activity around twofold after 24 h LPS and DSS challenge (p < 0.05). Our study confirms the proliferative and cytoprotective properties of EPA and DHA in IPEC-J2 cells. Increased intracellular mitochondrial activity and cell membrane integrity by ω-3 PUFAs can play a role in preventing enterocyte apoptosis during acute or chronic inflammatory and oxidative stress.

Keywords: docosahexaenoic acid; eicosapentaenoic acid; omega-3 polyunsaturated fatty acids; porcine IPEC-J2 cells.

Grants and funding