Fe3+-NTA as iron source for solar photo-Fenton at neutral pH in raceway pond reactors

Sci Total Environ. 2020 Sep 20:736:139617. doi: 10.1016/j.scitotenv.2020.139617. Epub 2020 May 23.

Abstract

This work presents, for the first time, a kinetic study of the solar photo-Fenton process at neutral pH mediated by the Fe3+-NTA complex (molar ratio 1: 1) applied to remove contaminants of emerging concern (CECs). To this end, wastewater treatment plant (WWTP) secondary effluents were treated in a raceway pond reactor (RPR) at pilot plant scale with 0.1 mM Fe3+-NTA and 0.88 mM H2O2 under average solar UVA irradiance of 35 W/m2. Sulfamethoxazole and imidacloprid, at 50 μg/L of initial concentration each, were selected as model CECs. Up to 40% of the sum of both model CECs was removed from simulated WWTP effluent by the Fe3+-NTA Fenton-like process, and >80% was removed by solar photo-Fenton. The effect of liquid depth in the reactor was evaluated, showing an increase of the treatment capacity from 12 mg CEC/m2·h to 18 mg CEC/m2·h when liquid depth increased from 5 to 15 cm. Afterwards, these results were validated with real WWTP effluents and compared with the results obtained with the Fe3+-EDDS complex under the same operating conditions. The same CEC removal rates were obtained with Fe3+-NTA and Fe3+-EDDS at 5 cm of liquid depth (kinetic constants of 0.110 min-1 and 0.046 min-1 for sulfamethoxazole and imidacloprid, respectively). Conversely, at 15 cm of liquid depth, the degradation rates were lower with Fe3+-NTA (kinetic constants of 0.034 min-1 for sulfamethoxazole and 0.017 min-1 for imidacloprid), whereas with Fe3+-EDDS the values were 0.076 min-1 and 0.047 min-1 for sulfamethoxazole and imidacloprid, respectively. Regarding process cost estimation, the use of NTA as iron chelate for solar photo-Fenton at neutral pH at pilot plant scale resulted very cost-effective (0.13-0.14 €/m3) in comparison with the use of EDDS (0.46-0.48 €/m3) at the two liquid depths tested.

Keywords: Advanced oxidation process; Chelating agents; Contaminants of emerging concern; Cost; EDDS; Real wastewater.