A Five-layer π-Aromatic Structure Formed through Self-assembly of a Porphyrin Trimer and Two Aromatic Guests

Chem Asian J. 2020 Jul 16;15(14):2212-2217. doi: 10.1002/asia.202000452. Epub 2020 Jun 22.

Abstract

In this study we synthesized two- and four-armed porphyrins - bearing two carboxyl and four 2-aminoquinolino functionalities, respectively, at their meso positions - as a complementary hydrogen bonding pair for the self-assembly of a D2 -symmetric porphyrin trimer host. Two units of the two-armed porphyrin and one unit of the four-armed porphyrin self-assembled quantitatively into the D2 -symmetric porphyrin trimer, stabilized through ammidinium-carboxylate salt bridge formation, in CH2 Cl2 and CHCl3 . The porphyrin trimer host gradually bound two units of 1,3,5-trinitrobenzene between the pair of porphyrin units, forming a five-layer aromatic structure. At temperatures below -40 °C, the rates of association and dissociation of the complexes were slow on the NMR spectroscopic time scale, allowing the 1 : 1 and 1 : 2 complexes of the trimer host and trinitrobenzene guest(s) to be detected independently when using less than 2 eq of trinitrobenzene. Vis titration experiments revealed the values of K1 (2.1±0.4×105 M-1 ) and K2 (2.2±0.06×104 M-1 ) in CHCl3 at room temperature.

Keywords: aromatic; hydrogen bond; porphyrin; self-assembly; trimer host.