Natural 15N/14N isotope composition in C3 leaves: are enzymatic isotope effects informative for predicting the 15N-abundance in key metabolites?

Funct Plant Biol. 2010 Jan;38(1):1-12. doi: 10.1071/FP10091.

Abstract

Although nitrogen isotopes are viewed as important tools for understanding plant N acquisition and allocation, the current interpretation of natural 15N-abundances (δ15N values) is often impaired by substantial variability among individuals or between species. Such variability is likely to stem from the fact that 15N-abundance of assimilated N is not preserved during N metabolism and redistribution within the plant; that is, 14N/15N isotope effects associated with N metabolic reactions are certainly responsible for isotopic shifts between organic-N (amino acids) and absorbed inorganic N (nitrate). Therefore, to gain insights into the metabolic origin of 15N-abundance in plants, the present paper reviews enzymatic isotope effects and integrates them into a metabolic model at the leaf level. Using simple steady-state equations which satisfactorily predict the δ15N value of amino acids, it is shown that the sensitivity of δ15N values to both photorespiratory and N-input (reduction by nitrate reductase) rates is quite high. In other words, the variability in δ15N values observed in nature might originate from subtle changes in metabolic fluxes or environment-driven effects, such as stomatal closure that in turn changes v0, the Rubisco-catalysed oxygenation rate.