Plants in constrained canopy micro-swards compensate for decreased root biomass and soil exploration with increased amounts of rhizosphere carboxylates

Funct Plant Biol. 2017 May;44(5):552-562. doi: 10.1071/FP16398.

Abstract

Root traits related to phosphorus (P) acquisition are used to make inferences about a species' P-foraging ability under glasshouse conditions. However, the effect on such root traits of constrained canopy spread, as occurs in dense pasture swards, is unknown. We grew micro-swards of Trifolium subterraneum L. and Ornithopus compressus L. at 15 and 60mg kg-1 soil P in a glasshouse. Shoots either spread beyond the pot perimeter or were constrained by a cylindrical sleeve adjusted to canopy height. After 8 weeks, shoot and root dry mass (DM), shoot tissue P concentration, rhizosphere carboxylates, arbuscular mycorrhizal (AM) fungal colonisation, total and specific root length (TRL and SRL respectively), average root diameter (ARD) and average root hair length (ARHL) were measured. In all species and treatments, constrained canopy spread decreased root DM (39-59%), TRL (27-45%) and shoot DM (10-28%), and increased SRL (20-33%), but did not affect ARD, ARHL and AM fungal colonisation. However, shoot P concentration and content increased, and rhizosphere carboxylates increased 3.5 to 12-fold per unit RL and 2.0- to 6.5-fold per micro-sward. Greater amounts of rhizosphere carboxylates when canopy spread was constrained appeared to compensate for reduced root growth enabling shoot P content to be maintained.