Malus domestica ADF1 severs actin filaments in growing pollen tubes

Funct Plant Biol. 2017 Apr;44(4):455-463. doi: 10.1071/FP16360.

Abstract

A dynamic actin cytoskeleton is essential for pollen tube growth and germination. However, the molecular mechanism that determines the organisation of the actin cytoskeleton in pollen remains poorly understood. ADF modulates the structure and dynamics of actin filaments and influences the higher-order organisation of the actin cytoskeleton in eukaryotic cells. Members of the ADF family have been shown to have important functions in pollen tube growth. However, the role of this gene family remains largely unknown in apple (Malus domestica Borkh.). In this study, we identified seven ADFs in the apple genome. Phylogenetic analysis showed that MdADF1 clusters with Arabidopsis thaliana (L.) Heynh. AtADF7, ADF8, ADF10 and AtADF11. We performed sequence alignments and analysed the domain structures of the seven MdADF proteins and identified the chromosome locations of the encoding genes. We cloned the gene encoding MdADF1 from 'Ralls Janet' apple and found that it was strongly expressed in pollen. Biochemical assays revealed that MdADF1 directly bound to and severed F-actin under low Ca2+ conditions. We demonstrated that knockdown of MdADF1 inhibited pollen tube growth and reduced the pollen germination rate, but rendered the pollen insensitive to treatment with Latrunculin B, an actin depolymerising agent. Taken together, our results provide insight into the function of MdADF1 and serve as a reference for studies of ADF in other plants.