Biodistribution and toxicity assessment of copper nanoparticles in the rat brain

J Trace Elem Med Biol. 2020 May 19:61:126505. doi: 10.1016/j.jtemb.2020.126505. Online ahead of print.

Abstract

Aims: The increase in the usage of copper nanoparticles (Cu NPs) in the industrial and medical fields has raised concerns about their possible adverse effects. The present study aims to investigate the potential adverse effects of Cu NPs on the brain of adult male Wistar rats through the estimation of some oxidative stress parameters and acetylcholinesterase (AChE) activity.

Basic procedures: Cu NPs were prepared and characterized using different techniques: Dynamic Light Scattering, X-Ray Diffraction, Transmission and Scanning Electron Microscopy, Fourier transform Infrared Spectroscopy, in addition to Energy Dispersive X-ray Spectroscopy. Rats were divided into two groups: Cu NPs-treated group (IV injected with 15 mg/kg ˷ 13 nm Cu NPs for 2 successive days) and a control group (injected with saline). Rats of the 2 groups were decapitated simultaneously after 48 h of the last injection. The Cu content in different brain areas was analyzed using inductively coupled plasma mass spectrometry. Moreover, the effect of Cu NPs on brain edema was evaluated. The behavior of rats in an open-field was also examined 24 h post the last injection.

Main findings: Significant increases of Cu content in the cortex, cerebellum, striatum, thalamus and hippocampus were found. Moreover, Cu NPs lead to the induction of oxidative stress condition in the thalamus, hypothamaus and medulla. In addition, Cu NPs induced significant increases in AChE activity in the medulla, hippocampus, striatum besides midbrain. Cu NPs-injected rats showed also decreased exploratory behaviour.

Principal conclusion: The results obtained in the present study point to the importance of toxicity assessments in evaluating the efficiency of Cu NPs for the safe implementation in different applications.

Keywords: Acetylcholinesterase; Copper nanoparticles; Oxidative stress; Wistar rats.