WY7 is a newly identified promoter from the rubber powdery mildew pathogen that regulates exogenous gene expression in both monocots and dicots

PLoS One. 2020 Jun 1;15(6):e0233911. doi: 10.1371/journal.pone.0233911. eCollection 2020.

Abstract

Promoters are very important for transcriptional regulation and gene expression, and have become invaluable tools for genetic engineering. Owing to the characteristics of obligate biotrophs, molecular research into obligate biotrophic fungi is seriously lagging behind, and very few of their endogenous promoters have been developed. In this study, a WY7 fragment was predicted in the genome of Oidium heveae Steinmann using PromoterScan. Its promoter function was verified with transient transformations (Agrobacterium tumefaciens-mediated transformation, ATMT) in Nicotiana tabacum cv. Xanthi nc. The analysis of the transcription range showed that WY7 could regulate GUS expression in both monocots (Zea mays Linn and Oryza sativa L. spp. Japonica cv. Nipponbare) and dicots (N. tabacum and Hylocereus undulates Britt). The results of the quantitative detection showed that the GUS transient expression levels when regulated by WY7 was more than 11.7 times that of the CaMV 35S promoter in dicots (N. tabacum) and 5.13 times that of the ACT1 promoter in monocots (O. sativa). GUS staining was not detected in the T1 generation of the WY7-GUS transgenic N. tabacum. This showed that WY7 is an inducible promoter. The cis elements of WY7 were predicted using PlantCARE, and further experiments indicated that WY7 was a low temperature- and salt-inducible promoter. Soluble proteins produced by WY7-hpa1Xoo transgenic tobacco elicited hypersensitive responses (HR) in N. tabacum leaves. N. tabacum transformed with pBI121-WY7-hpa1Xoo exhibited enhanced resistance to the tobacco mosaic virus (TMV). The WY7 promoter has a lot of potential as a tool for plant genetic engineering. Further in-depth studies will help to better understand the transcriptional regulation mechanisms of O. heveae.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Fungi / genetics*
  • Fungi / pathogenicity
  • Gene Expression Regulation, Fungal*
  • Genetic Engineering / methods*
  • Genome, Fungal
  • Hevea / genetics
  • Hevea / microbiology
  • Host-Pathogen Interactions / genetics
  • Magnoliopsida / genetics
  • Magnoliopsida / microbiology
  • Nicotiana / genetics
  • Nicotiana / microbiology
  • Oryza / genetics
  • Oryza / microbiology
  • Plant Diseases / microbiology
  • Plant Diseases / prevention & control*
  • Plant Leaves / microbiology
  • Plants, Genetically Modified
  • Promoter Regions, Genetic*
  • Transformation, Genetic
  • Zea mays / genetics
  • Zea mays / microbiology

Grants and funding

This study received financial support from Key Research and Development Program of Hainan Province (No. ZDYF2018240), National Key R & D Program of China (No. 2018YFD0201105), the National Natural Science Foundation of China (No. 31660033), the National Key Basic Research Plan of China (No.2011CB111612), the Innovation Team of Hainan Natural Science Foundation of China (2016CXTD002), the National Natural Science Foundation of China (No. 31560495, No.31760499), China Agriculture Research System (No.CARS-34-BC1), and the scientific research beginning project of Hainan University (No. kyqd1535) to WM.