Ten tips for a text-mining-ready article: How to improve automated discoverability and interpretability

PLoS Biol. 2020 Jun 1;18(6):e3000716. doi: 10.1371/journal.pbio.3000716. eCollection 2020 Jun.

Abstract

Data-driven research in biomedical science requires structured, computable data. Increasingly, these data are created with support from automated text mining. Text-mining tools have rapidly matured: although not perfect, they now frequently provide outstanding results. We describe 10 straightforward writing tips-and a web tool, PubReCheck-guiding authors to help address the most common cases that remain difficult for text-mining tools. We anticipate these guides will help authors' work be found more readily and used more widely, ultimately increasing the impact of their work and the overall benefit to both authors and readers. PubReCheck is available at http://www.ncbi.nlm.nih.gov/research/pubrecheck.

Publication types

  • Research Support, N.I.H., Intramural

MeSH terms

  • Automation
  • Data Mining*
  • Internet
  • Software

Grants and funding

This research was supported by the NIH Intramural Research Program, National Library of Medicine. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.