Flexible Drift Tube for High Resolution Ion Mobility Spectrometry (Flex-DT-IMS)

Anal Chem. 2020 Jul 7;92(13):9104-9112. doi: 10.1021/acs.analchem.0c01357. Epub 2020 Jun 16.

Abstract

This paper describes, in detail, the development of a novel, low-cost, and flexible drift tube (DT) along with an associated ion mobility spectrometer system. The DT is constructed from a flexible printed circuit board (PCB), with a bespoke "dog-leg" track design, that can be rolled up for ease of assembly. This approach incorporates a shielding layer, as part of the flexible PCB design, and represents the minimum dimensional footprint conceivable for a DT. The low thermal mass of the polyimide substrate and overlapping electrodes, as afforded by the dog-leg design, allow for efficient heat management and high field linearity within the tube-achieved from a single PCB. This is further enhanced by a novel double-glazing configuration which provides a simple and effective means for gas management, minimizing thermal variation within the assembly. Herein, we provide a full experimental characterization of the flexible DT ion mobility spectrometer (Flex-DT-IMS) with corresponding electrodynamic (Simion 8.1) and fluid dynamic (SolidWorks) simulations. The Flex-DT-IMS is shown to have a resolution >80 and a detection limit of low nanograms for the analysis of common explosives (RDX, PETN, HMX, and TNT).

Publication types

  • Research Support, Non-U.S. Gov't