Bioactive Gum Arabic/κ-Carrageenan-Incorporated Nano-Hydroxyapatite Nanocomposites and Their Relative Biological Functionalities in Bone Tissue Engineering

ACS Omega. 2020 May 11;5(20):11279-11290. doi: 10.1021/acsomega.9b03761. eCollection 2020 May 26.

Abstract

The present frontiers of bone tissue engineering are being pushed by novel biomaterials that exhibit phenomenal biocompatibility and adequate mechanical strength. In this work, we fabricated a ternary system incorporating nano-hydroxyapatite (n-HA)/gum arabic (GA)/κ-carrageenan (κ-CG) with varying concentrations, i.e., 60/30/10 (CHG1), 60/20/20 (CHG2), and 60/10/30 (CHG3). A binary system with n-HA and GA was also prepared with a ratio of 60/40 (HG) and compared with the ternary system. A rapid mineralization of the apatite layer was observed for the ternary systems after incubation in simulated body fluid (SBF) for 15 days as corroborated by scanning electron microscopy (SEM). CHG2 exhibited the maximum apatite layer deposition. Further, the nanocomposites were physicochemically analyzed by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and mechanical testing. Their results revealed a substantial interaction among the components, appropriate crystallinity, and significantly enhanced compressive strength and modulus for the ternary nanocomposites. The greatest mechanical strength was achieved by the scaffold containing equal amounts of GA and κ-CG. The cytotoxicity was evaluated by culturing osteoblast-like MG63 cells, which exhibited the highest cell viability for the CHG2 nanocomposite system. It was further supported by confocal microscopy, which revealed the maximum cell proliferation for the CHG2 scaffold. In addition, enhanced antibacterial activity, protein adsorption, biodegradability, and osteogenic differentiation were observed for the ternary nanocomposites. Osteogenic gene markers, such as osteocalcin (OCN), osteonectin (ON), and osteopontin (OPN), were present in higher quantities in the CHG2 and CHG3 nanocomposites as confirmed by western blotting. These results substantiated the pertinence of n-HA-, GA-, and κ-CG-incorporated ternary systems to bone implant materials.