Exposure Time Impact on the Geomechanical Characteristics of Sandstone Formation during Horizontal Drilling

Molecules. 2020 May 27;25(11):2480. doi: 10.3390/molecules25112480.

Abstract

The rock geomechanical properties are the key parameters for designing the drilling and fracturing operations and for programing the geomechanical earth models. During drilling, the horizontal-section drilling fluids interact with the reservoir rocks in different exposure time, and to date, there is no comprehensive work performed to study the effect of the exposure time on the changes in sandstone geomechanical properties. The objective of this paper is to address the exposure time effect on sandstone failure parameters such as unconfined compressive strength, tensile strength, acoustic properties, and dynamic elastic moduli while drilling horizontal sections using barite-weighted water-based drilling fluid. To simulate the reservoir conditions, Buff Berea sandstone core samples were exposed to the drilling fluid (using filter press) under 300 psi differential pressure and 200 °F temperature for different exposure times (up to 5 days). The rock characterization and geomechanical parameters were evaluated as a function of the exposure time. Scratch test was implemented to evaluate rock strength, while ultrasonic pulse velocity was used to obtain the sonic data to estimate dynamic elastic moduli. The rock characterization was accomplished by X-ray diffraction, nuclear magnetic resonance, and scanning electron microscope. The study findings showed that the rock compression and tensile strengths reduced as a function of exposure time (18% and 19% reduction for tensile strength and unconfined compression strength, respectively, after 5 days), while the formation damage displayed an increasing trend with time. The sonic results demonstrated an increase in the compressional and shear wave velocities with increasing exposure time. All the dynamic elastic moduli showed an increasing trend when extending the exposure time except Poisson's ratio which presented a constant behavior after 1 day. Nuclear magnetic resonance results showed 41% porosity reduction during the five days of mud interaction. Scanning electron microscope images showed that the rock internal surface topography and internal integrity changed with exposure time, which supported the observed strength reduction and sonic variation. A new set of empirical correlations were developed to estimate the dynamic elastic moduli and failure parameters as a function of the exposure time and the porosity with high accuracy.

Keywords: barite-water-based drilling fluid; exposure time; geomechanical properties; horizontal drilling; sandstone formation.

MeSH terms

  • Acoustics
  • Compressive Strength
  • Geologic Sediments / chemistry*
  • Stress, Mechanical