Vancomycin-loaded nanoparticles against vancomycin intermediate and methicillin resistant Staphylococcus aureus strains

Nanotechnology. 2020 Sep 11;31(37):375101. doi: 10.1088/1361-6528/ab97d7. Epub 2020 May 29.

Abstract

Bacterial infections represent one of the leading causes of mortality in the world. Among causative pathogens, S. aureus is prominently known as the underlying cause of many multidrug resistant infections that are often treated with the first-line choice antibiotic vancomycin (VCM). Loading antibiotics into polymeric nanoparticles (Np) displays promise as an alternative method to deliver therapy due to the greater access and accumulation of the antibiotic at the site of the infection as well as reducing toxicity, irritation and degradation. The aim of this work was to prepare, characterize and evaluate VCM-loaded nanoparticles (VNp) for use against S. aureus strains. Moreover, conjugation of Nps with holo-transferrin (h-Tf) was investigated as an approach for improving targeted drug delivery. VNp were prepared by double emulsion solvent evaporation method using PLGA and PVA or DMAB as surfactants. The particles were characterized for size distribution, Zeta Potential, morphology by transmission electron microscopy, encapsulation yield and protein conjugation efficiency. Process yield and drug loading were also investigated along with an in vitro evaluation of VNp antimicrobial effects against S. aureus strains. Results showed that Np were spontaneously formed with a mean diameter lower than 300 nm in a narrow size distribution that presented a spherical shape. The bioconjugation with h-Tf did not appear to increase the antimicrobial effect of VNp. However, non-bioconjugated Np presented a minimal inhibitory concentration lower than free VCM against a MRSA (Methicillin-resistant S. aureus) strain, and slightly higher against a VISA (VCM intermediate S. aureus) strain. VNp without h-Tf showed potential to assist in the development of new therapies against S. aureus infections.

MeSH terms

  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / pharmacology*
  • Drug Carriers / chemistry
  • Methicillin-Resistant Staphylococcus aureus / drug effects*
  • Microbial Sensitivity Tests
  • Nanoparticles / chemistry*
  • Particle Size
  • Staphylococcus aureus / drug effects
  • Transferrin / chemistry
  • Vancomycin / chemistry
  • Vancomycin / pharmacology*

Substances

  • Anti-Bacterial Agents
  • Drug Carriers
  • Transferrin
  • Vancomycin