Stable lead-free perovskite solar cells: A first-principles investigation

Spectrochim Acta A Mol Biomol Spectrosc. 2020 Oct 5:239:118493. doi: 10.1016/j.saa.2020.118493. Epub 2020 May 16.

Abstract

A suitable substitution of the lead element in lead-based halide perovskites is a feasible approach to explore lead-free perovskite material with excellent stability, tunable band gap, high optical absorption, and better photovoltaic performance. In this study, the toxic lead is replaced by mixing Ba/Si and Ba/Sn to develop environmentally friendly perovskite materials with excellent properties. MABa0.125Sn0.875I3 has shown evidently improved properties in terms of structural stability and suitable band gap, which indicates that MABa0.125Sn0.875I3 can become the most potential material for applications in single-junction solar cells. Moreover, MABa0.50Sn0.50I3 and MABa0.25Sn0.75I3 can be promising materials for the top cell in the tandem architecture due to their proper band gaps (1.70-1.80 eV). Moreover, the optical absorption coefficients of the proposed lead-free perovskites are stronger than that of MAPbI3 in the range of 500-800 nm. Our work can provide new insights into exploring lead-free perovskite solar cells with excellent stability and suitable band gap.

Keywords: Electronic structure; First-principles calculations; Mixed-metal; Optical properties; Structural stability.