Molecular-Pump-Enabled Synthesis of a Daisy Chain Polymer

J Am Chem Soc. 2020 Jun 10;142(23):10308-10313. doi: 10.1021/jacs.0c04029. Epub 2020 May 28.

Abstract

The assembly of a kinetically trapped daisy chain polymer under redox control has been achieved with a self-complementary monomer using an energy ratchet mechanism. The monomer is composed of a molecular pump at one end and a cyclobis(paraquat-p-phenylene) (CBPQT4+) ring at the other end. The pump and ring are linked together by a long collecting chain. When the monomer is reduced to its radical state, it self-assembles into a supramolecular daisy chain polymer on account of radical-pairing interactions. When all of the bipyridinium radical cations are quickly oxidized to dications, the CBPQT4+ rings are forced to thread onto the collecting chains, forming an out-of-equilibrium, kinetically trapped daisy chain polymer. This polymer can be switched reversibly back to the supramolecular polymer by reduction, followed by depolymerization to afford the monomer as a result of slow oxidation. This proof-of-concept investigation opens up opportunities for synthesizing mechanically interlocked polymers using molecular machines.

Publication types

  • Research Support, Non-U.S. Gov't